55 research outputs found

    Gossip in a Smartphone Peer-to-Peer Network

    Full text link
    In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 00 bits to their neighbors in each round, and the case where nodes can advertise 11 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system.Comment: Extended Abstract to Appear in the Proceedings of the ACM Conference on the Principles of Distributed Computing (PODC 2017

    Tight bounds for rumor spreading in graphs of a given conductance

    Get PDF
    We study the connection between the rate at which a rumor spreads throughout a graph and the conductance of the graph -- a standard measure of a graph\u27s expansion properties. We show that for any n-node graph with conductance phi, the classical PUSH-PULL algorithm distributes a rumor to all nodes of the graph in O(phi^(-1) log(n)) rounds with high probability (w.h.p.). This bound improves a recent result of Chierichetti, Lattanzi, and Panconesi [STOC 2010], and it is tight in the sense that there exist graphs where Omega(phi^(-1)log(n)) rounds of the PUSH-PULL algorithm are required to distribute a rumor w.h.p. We also explore the PUSH and the PULL algorithms, and derive conditions that are both necessary and sufficient for the above upper bound to hold for those algorithms as well. An interesting finding is that every graph contains a node such that the PULL algorithm takes O(phi^(-1) log(n)) rounds w.h.p. to distribute a rumor started at that node. In contrast, there are graphs where the PUSH algorithm requires significantly more rounds for any start node

    Amplifiers and Suppressors of Selection for the Moran Process on Undirected Graphs

    Get PDF
    We consider the classic Moran process modeling the spread of genetic mutations, as extended to structured populations by Lieberman et al. (Nature, 2005). In this process, individuals are the vertices of a connected graph G. Initially, there is a single mutant vertex, chosen uniformly at random. In each step, a random vertex is selected for reproduction with a probability proportional to its fitness: mutants have fitness r > 1, while non-mutants have fitness 1. The vertex chosen to reproduce places a copy of itself to a uniformly random neighbor in G, replacing the individual that was there. The process ends when the mutation either reaches fixation (i.e., all vertices are mutants), or gets extinct. The principal quantity of interest is the probability with which each of the two outcomes occurs. A problem that has received significant attention recently concerns the existence of families of graphs, called strong amplifiers of selection, for which the fixation probability tends to 1 as the order n of the graph increases, and the existence of strong suppressors of selection, for which this probability tends to 0. For the case of directed graphs, it is known that both strong amplifiers and suppressors exist. For the case of undirected graphs, however, the problem has remained open, and the general belief has been that neither strong amplifiers nor suppressors exist. In this paper we disprove this belief, by providing the first examples of such graphs. The strong amplifier we present has fixation probability 1 − ˜ O(n^ −1/3), and the strong suppressor has fixation probability ˜O(n^−1/4). Both graph constructions are surprisingly simple. We also prove a general upper bound of 1 − ˜℩(n^−1/3) on the fixation probability of any undirected graph. Hence, our strong amplifier is existentially optimal

    An Improved Bound for Random Binary Search Trees with Concurrent Insertions

    Get PDF
    Recently, Aspnes and Ruppert (DISC 2016) defined the following simple random experiment to determine the impact of concurrency on the performance of binary search trees: n randomly permuted keys arrive one at a time. When a new key arrives, it is first placed into a buffer of size c. Whenever the buffer is full, or when all keys have arrived, an adversary chooses one key from the buffer and inserts it into the binary search tree. The ability of the adversary to choose the next key to insert among c buffered keys, models a distributed system, where up to c processes try to insert keys concurrently. Aspnes and Ruppert showed that the expected average depth of nodes in the resulting tree is O(log(n) + c) for a comparison-based adversary, which can only take the relative order of arrived keys into account. We generalize and strengthen this result. In particular, we allow an adversary that knows the actual values of all keys that have arrived, and show that the resulting expected average node depth is D_{avg}(n) + O(c), where D_{avg}(n) = 2ln(n) - Theta(1) is the expected average node depth of a random tree obtained in the standard unbuffered version of this experiment. Extending the bound by Aspnes and Ruppert to this stronger adversary model answers one of their open questions

    Bounds on the Voter Model in Dynamic Networks

    Get PDF
    In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the same opinion. We consider dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise to the graph sequence G1,G2,
G_1, G_2, \dots , where we assume that GiG_i has conductance at least ϕi\phi_i. We assume that the degrees of nodes don't change over time as one can show that the consensus time can become super-exponential otherwise. In the case of a sequence of dd-regular graphs, we obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results improve the state of the art. Here we show that the expected number of rounds until all nodes have the same opinion is bounded by O(m/(dmin⋅ϕ))O(m/(d_{min} \cdot \phi)), for any graph with mm edges, conductance ϕ\phi, and degrees at least dmind_{min}. In addition, we consider a biased dynamic voter model, where each opinion ii is associated with a probability PiP_i, and when a node chooses a neighbour with that opinion, it adopts opinion ii with probability PiP_i (otherwise the node keeps its current opinion). We show for any regular dynamic graph, that if there is an Ï”>0\epsilon>0 difference between the highest and second highest opinion probabilities, and at least Ω(log⁥n)\Omega(\log n) nodes have initially the opinion with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on the convergences time, which becomes O(log⁥n/ϕ)O(\log n/\phi) for static graphs

    Spread of Information and Diseases via Random Walks in Sparse Graphs

    Get PDF
    We consider a natural network diffusion process, modeling the spread of information or infectious diseases. Multiple mobile agents perform independent simple random walks on an n-vertex connected graph G. The number of agents is linear in n and the walks start from the stationary distribution. Initially, a single vertex has a piece of information (or a virus). An agent becomes informed (or infected) the first time it visits some vertex with the information (or virus); thereafter, the agent informs (infects) all vertices it visits. Giakkoupis et al. (PODC'19) have shown that the spreading time, i.e., the time before all vertices are informed, is asymptotically and w.h.p. the same as in the well-studied randomized rumor spreading process, on any d-regular graph with d=Ω(logn). The case of sub-logarithmic degree was left open, and is the main focus of this paper. First, we observe that the equivalence shown by Giakkoupis et al. does not hold for small d: We give an example of a 3-regular graph with logarithmic diameter for which the expected spreading time is Ω(log^2n/loglogn), whereas randomized rumor spreading is completed in time Θ(logn), w.h.p. Next, we show a general upper bound of O~(d⋅diam(G)+log^3n/d), w.h.p., for the spreading time on any d-regular graph. We also provide a version of the bound based on the average degree, for non-regular graphs. Next, we give tight analyses for specific graph families. We show that the spreading time is O(logn), w.h.p., for constant-degree regular expanders. For the binary tree, we show an upper bound of O(logn⋅loglogn), w.h.p., and prove that this is tight, by giving a matching lower bound for the cover time of the tree by n random walks. Finally, we show a bound of O(diam(G)), w.h.p., for k-dimensional grids, by adapting a technique by Kesten and Sidoravicius.Supported in part by ANR Project PAMELA (ANR16-CE23-0016-01). Gates Cambridge Scholarship programme. Supported by the ERC Grant `Dynamic March’

    Low Randomness Rumor Spreading via Hashing

    Get PDF
    International audienceWe consider the classical rumor spreading problem, where a piece of information must be disseminated from a single node to all n nodes of a given network. We devise two simple push-based protocols, in which nodes choose the neighbor they send the information to in each round using pairwise independent hash functions, or a pseudo-random generator, respectively. For several well-studied topologies our algorithms use exponentially fewer random bits than previous protocols. For example, in complete graphs, expanders, and random graphs only a polylogarithmic number of random bits are needed in total to spread the rumor in O(log n) rounds with high probability. Previous explicit algorithms require Omega(n) random bits to achieve the same round complexity. For complete graphs, the amount of randomness used by our hashing-based algorithm is within an O(log n)-factor of the theoretical minimum determined by [Giakkoupis and Woelfel, 2011]

    Randomized Mutual Exclusion with Constant Amortized RMR Complexity on the DSM

    Get PDF
    International audienceIn this paper we settle an open question by determining the remote memory reference (RMR) complexity of randomized mutual exclusion, on the distributed shared memory model (DSM) with atomic registers, in a weak but natural (and stronger than oblivious) adversary model. In particular, we present a mutual exclusion algorithm that has constant expected amortized RMR complexity and is deterministically deadlock free. Prior to this work, no randomized algorithm with o(log n/ log log n) RMR complexity was known for the DSM model. Our algorithm is fairly simple, and compares favorably with one by Bender and Gilbert (FOCS 2011) for the CC model, which has expected amortized RMR complexity O(log^2 log n) and provides only probabilistic deadlock freedom

    Randomized loose renaming in O(log log n) time

    Get PDF
    International audienceRenaming is a classic distributed coordination task in which a set of processes must pick distinct identifiers from a small namespace. In this paper, we consider the time complexity of this problem when the namespace is linear in the number of participants, a variant known as loose renaming. We give a non-adaptive algorithm with O(log⁥log⁥n)O( \log \log n ) (individual) step complexity, where nn is a known upper bound on contention, and an adaptive algorithm with step complexity O((log⁥log⁥k)2)O( (\log \log k)^2 ), where kk is the actual contention in the execution. We also present a variant of the adaptive algorithm which requires O(klog⁥log⁥k)O( k \log \log k ) \emph{total} process steps. All upper bounds hold with high probability against a strong adaptive adversary. We complement the algorithms with an Ω(log⁥log⁥n)\Omega( \log \log n ) expected time lower bound on the complexity of randomized renaming using test-and-set operations and linear space. The result is based on a new coupling technique, and is the first to apply to non-adaptive randomized renaming. Since our algorithms use O(n)O(n) test-and-set objects, our results provide matching bounds on the cost of loose renaming in this setting

    Efficient plurality consensus, or : the benefits of cleaning up from time to time.

    Get PDF
    Plurality consensus considers a network of n nodes, each having one of k opinions. Nodes execute a (randomized) distributed protocol with the goal that all nodes adopt the plurality (the opinion initially supported by the most nodes). Communication is realized via the Gossip (or random phone call) model. A major open question has been whether there is a protocol for the complete graph that converges (w.h.p.) in polylogarithmic time and uses only polylogarithmic memory per node (local memory). We answer this question affirmatively. We propose two protocols that need only mild assumptions on the bias in favor of the plurality. As an example of our results, consider the complete graph and an arbitrarily small constant multiplicative bias in favor of the plurality. Our first protocol achieves plurality consensus in O(log(k)*log(log(n))) rounds using log(k) + Theta(log(log(k))) bits of local memory. Our second protocol achieves plurality consensus in O(log(n)*log(log(n))) rounds using only log(k) + 4 bits of local memory. This disproves a conjecture by Becchetti et al. (SODA'15) implying that any protocol with local memory log(k)+O(1) has worst-case runtime Omega(k). We provide similar bounds for much weaker bias assumptions. At the heart of our protocols lies an undecided state, an idea introduced by Angluin et al. (Distributed Computing'08)
    • 

    corecore